Path: utzoo!utgpu!news-server.csri.toronto.edu!bonnie.concordia.ca!thunder.mcrcim.mcgill.edu!snorkelwacker.mit.edu!mintaka!think.com!sdd.hp.com!spool2.mu.edu!uunet!mcsun!corton!irisa!raoult From: raoult@irisa.fr (Jean-Claude Raoult) Newsgroups: comp.theory Subject: Re: lower-bound for binary search Message-ID: <1991Jan30.101200.4395@irisa.fr> Date: 30 Jan 91 10:12:00 GMT References: <56531@eerie.acsu.Buffalo.EDU> <56707@eerie.acsu.Buffalo.EDU> Sender: news@irisa.fr Organization: IRISA, Rennes (Fr) Lines: 8 I am not so sure, that a lower bound for an algorithm searching in a sorted list "by all means" can exist. If your means is divination, then your search can be done in O(1). More seriously, it may happen that your sorted list is at the same time a h-code table filled with a perfect hashing function. Then again, you will get your answer in O(1). If the only thing you know is that your list is sorted, then you must use only comparisons - hence the log(n) bound.